Possible Solutions

The cost of bananas per pound is represented in the table below.

Pounds of Bananas	Cost (\$)
2	2.50
3	3.75
5	6.25
7	8.75

Write an equation that represents the cost of buying *x* amount of bananas.

Possible Solution 1

- In a proportional relationship problem, *k* is the unit rate. In this problem, the amount paid for one pound of bananas is the unit rate. This number can be determined by finding $\frac{y}{x}$, such as $\frac{2.50}{2}$ or $\frac{3.75}{3}$, etc.
- The unit rate is \$1.25 per pound and represents the *k* in the equation y = kx.
- The solution is y = 1.25x.

Possible Solution 2

• You can use the table to determine the slope of the line represented in the table. This value is *k* in the equation *y* = *kx*.

$$\frac{change \text{ in } y}{change \text{ in } x} = \frac{\Delta y}{\Delta x} = \frac{1.25}{1} = \frac{2.50}{2}$$

- Since all the ratios simplify to 1.25 and the cost of 0 bananas is \$0, the 1.25 is the k in the equation.
- The cost of bananas per pound is represented in the table below.

Pounds of	Cost
Bananas	(\$)

• Write an equation that represents the cost of buying *x* amount of bananas. y = 1.25x.

Possible Solution 3

- Graph the points on the table and determine the rate of change and *y*-intercept of the graph to help write the equation for the data.
- The graph starts at (0, 0) and has a rate of change of \$1.25 per pound.

• The solution is y = 1.25x.