Possible Solutions

The cost of bananas per pound is represented in the table below.

Pounds of Bananas	Cost (\$)
2	2.50
3	3.75
5	6.25
7	8.75

Write an equation that represents the cost of buying x amount of bananas.

Possible Solution 1

- In a proportional relationship problem, k is the unit rate. In this problem, the amount paid for one pound of bananas is the unit rate. This number can be determined by finding $\frac{y}{x^{\prime}}$ such as $\frac{2.50}{2}$ or $\frac{3.75}{3}$, etc.
- The unit rate is $\$ 1.25$ per pound and represents the k in the equation $y=k x$.
- The solution is $y=1.25 x$.

Possible Solution 2

- You can use the table to determine the slope of the line represented in the table. This value is k in the equation $y=k x$.

$$
\frac{\text { change in } y}{\text { change in } x}=\frac{\Delta y}{\Delta x}=\frac{1.25}{1}=\frac{2.50}{2}
$$

- Since all the ratios simplify to 1.25 and the cost of 0 bananas is $\$ 0$, the 1.25 is the k in the equation.
- The cost of bananas per pound is represented in the table below.

Pounds of Bananas	Cost (\$)

+1	2	2.50	+1.25
+2	3	3.75	+2. 50
+2	5	6.25	+2.50
	7	8.75	
	$\frac{1.25}{1}$	$=1.25$	

- Write an equation that represents the cost of buying x amount of bananas. $y=1.25 x$.

Possible Solution 3

- Graph the points on the table and determine the rate of change and y intercept of the graph to help write the equation for the data.
- The graph starts at $(0,0)$ and has a rate of change of $\$ 1.25$ per pound.

- The solution is $y=1.25 x$.

